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While generative Artificial Intelligence (AI) has the potential to improve kidney 
care, it also poses substantial challenges. Applications under discussion touch 
on every aspect of treatment, including the creation of new prognostic tools and 
methodologies, personalized medical education for professionals and patients, 
and protocols that alleviate the burden of administrative tasks. FME is developing 
an AI framework for clinical workflows that considers both the benefits and risks 
that AI poses for the future of patient care.  

The development of generative Artificial Intelligence 
(AI) has created excitement and prompted vigorous 
debate across various industries, including healthcare.1 
Dubbed “Gen AI,” this novel technology transcends 
conventional rule-based systems, data analysis, and 
predictions. Departing from the familiar confines of 
traditional AI, generative AI ventures into uncharted 
territory where machines wield the power of creativity 
sans human intervention.2 

Understanding Generative AI’s  
Unconventional Pathways
Generative AI stands apart because of its ability to 
create human-like content—images, text, melodies, 
or even entire narratives—using complex computer 
algorithms. These differ from conventional machine 
learning algorithms that can generate simple outputs. 
Instead, generative models create new content based 
on an assortment of data on which they have been 
trained by weaving together semantic patterns and 
knowledge structures.2,3

Potential Benefits of Generative AI in Kidney Care
Generative AI systems, particularly large language 
models (LLMs), hold numerous potential applications 
and may revolutionize several aspects of healthcare.4,5,6

• Clinical Insights and Powerful Prognostic Tools: 
A recent systematic review highlighted that most 
published studies focus on the use of LLMs as 
medical chatbots and to generate patient information 
and clinical documentation as well as for patient 
education and to simplify imaging reports.7 Generative 
AI and multimodal LLMs may have direct clinical 
applications, such as generating diagnostic 8,9,10,11 
and prognostic 12,13 predictions, given their ability to 
encode medical knowledge and/or interpret medical 
signs and symptoms similar to semantic elements.12,13 
For instance, Kanda and colleagues utilized an early 
natural language processing (NLP) architecture, 
word2vec, to analyze chronic kidney disease (CKD) 

literature, accurately predicting death and end-stage 
kidney disease (ESKD) onset. With the advent of more 
advanced LLMs, coupled with fine-tuning in the medical 
domain, highly accurate outcome predictions can be 
generated directly from medical notes, referral letters, 
and patients’ narratives without the need to document 
medical encounters in structured electronic health 
record systems, thus reducing documentation burden 
and limitations due to incomplete ontologies.12,15 

• Personalized Care: New LLM architectures like pre-
trained transformers offer broader possibilities for 
analyzing multimodal data and detecting nuanced 
associations. These advancements enable language-
understanding technologies to learn patterns across 
various data types, such as comorbidity codes, lab 
tests, images, clinical narratives, and patient-reported 
outcomes. For example, Savcisens et al. demonstrated 
the effectiveness of this approach in predictive 
modeling using life-events data, showing that these 
models could accurately predict diverse outcomes 
such as early mortality and personality nuances by 
learning patterns from detailed event sequences.16 

Departing from the familiar 
confines of traditional AI, 
generative AI ventures into 
uncharted territory where 
machines wield the power 
of creativity sans human 
intervention.2



• Efficiency and Cost Savings: Generative AI can 
alleviate the administrative burden on healthcare 
staff, including time-consuming non-medical 
tasks.17,18,19,20,21,22,23 Streamlining these tasks can save 
time, minimize disruptions, and potentially enhance 
patient-clinician interactions. Studies show that LLMs 
can summarize medical notes and dialogues with 
high accuracy.24,25 For instance, FME Global Medical 
Office and Santa Barbara Smart Health developed 
software leveraging GPT-4 to transcribe patient-
physician interactions, achieving reliable abstraction 
of 33 medical elements, including pre-existing 
medical conditions, drug prescriptions, biochemical 
parameters, active problems, and treatment plans. The 
system produced a reliable and accurate summary of 
medical concepts in a small proof-of-concept study. 
FME is exploring how generative AI might streamline the 
process of collecting patient referral information, with 
the potential to expedite referrals and admissions and 
enhance data entry accuracy. We are also investigating 
the development of a ChatGPT-like tool to assist 
staff in offering targeted guidance for handling non-
clinical tasks, with the goal of reducing staff burden 
and supporting new clinical leaders. This includes 

examining how the tool could navigate intricate 
requirements related to Worker’s Compensation and 
the Conditions for Coverage for ESKD Facilities. 
Additionally, FME aims to reduce patient attrition 
and improve their experience.26,27,28 By considering 
the implementation of an AI-guided referral pathway 
and AI-powered case management, we hope to 
assist FME’s Continuity of Care team in identifying 
patients at high risk of attrition, conducting root cause 
analyses, and providing data-driven insights to case 
managers (Figure 1). 

FIGURE 1  |  AI-POWERED CARE MANAGEMENT 
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• Tailored Medical Education: Personalizing medical 
education for healthcare professionals and patients is 
another promising area of application for generative 
AI.26,27,28 We utilized retrieval-augmented generation 
(RAG), a novel AI-driven approach, to efficiently 
process and extract meaningful information from 
published literature on uremic toxins. The process 
involved preparing a curated literature database, 
creating a vector database from curated literature,  
retrieving relevant information based on queries, 
and generating responses using LLMs incorporating 
retrieved information. Although RAG has significantly 
improved content generation, the potential for 
“hallucinations” persists, and the enhanced LLM 
outputs still require human verification. For more 
information on the hallucination topic, refer to 
“Potential Risks” below.

• Comprehensive Use of Data and Knowledge: 
Dietary management is crucial for patients with 
kidney failure undergoing dialysis, but personalized 
advice is challenging due to varying food preferences 
and other factors. By leveraging LLMs, there is 
potential to integrate patient demographics, clinical 
data, and food preferences to create tailored recipe 
recommendations.29,30 Renal Research Institute (RRI) 
tested the emergent ability of LLM to generate sound 
nutritional advice for people with CKD (Figure 2). While 
this approach has limitations in precise nutritional 
analysis for people with CKD, it’s important to note 

that this evaluation of LLM sheds light on the current 
knowledge base. For instance, in RRI’s study, ChatGPT 
underestimated calories, protein, fat, phosphorus, 
potassium, and sodium content on ChatGPT-generated 
recipes when compared with U.S. Department 
of Agriculture (USDA)-approved software. These 
discrepancies are much smaller with online pre-defined 
recipes (Figure 3). While the underlying knowledge 
basis of GPT-4 falls short in supporting nutritional 
analysis for people with kidney disease, incorporating 
LLMs in more complex architectures may enhance the 
accuracy of nutritional estimation.31,32,33

FIGURE 2  |  STUDY PROCESS FOR EVALUATING THE PERFORMANCE OF CHATGPT IN GENERATING NUTRITIONAL ADVICE 
FOR ESKD PATIENTS 

Personalizing medical education 
for healthcare professionals  
and patients is another 
promising area of application  
for generative AI.26,27,28

Virtual “patient” Renal Dietitian
evaluationgenerated by

Monte Carlo Simulation

Enter 
“patient” info 
into ChatGPT

Daily menu
creation

ChatGPT:
Nutritional
analysis

USDA-approved
software:
Nutritional
analysis



Potential Risks of Generative AI in Kidney Care
Generative AI offers unprecedented potential to 
revolutionize patient care, diagnosis, and treatment 
methodologies. However, substantial risks remain.

• Biased Outputs from Training Data: Generative 
models learn from the data on which they are trained. If 
their training samples and datasets include biases, then 
those models can generate outputs that are ethically 
questionable.6 In the realm of kidney care, such biases 
could propagate treatment disparities or inequalities.

• Privacy and Security Concerns: Generative AI’s 
ability to generate synthetic data, which resembles 
real data, is tremendously useful in research and 
model training, but this capability comes with privacy 
implications. If the original datasets used to train 
the generative AI are not adequately secured, there 
is a risk that the synthetic data could inadvertently 
reveal sensitive personal information. Furthermore, 
machine learning systems in sensitive domains such 
as healthcare are particularly vulnerable to adversarial 
AI attacks where malicious actors can manipulate or 
exploit the models by introducing carefully crafted 
inputs to the system.34,35

 
• Hallucinations in AI Responses: In the context of 

generative AI, “hallucinations” refer to the generation 
of responses that are not logically or semantically 
coherent or are not relevant to the input prompt. 

These hallucinations can occur when generative 
AI formulates responses based on patterns or 
associations it has learned from its training data 
without fully understanding the meaning or context 
of the input prompt. This could pose serious risks to 
patient safety and well-being if implemented without 
proper verification or oversight.36

 
• Transparency and Explainability Challenges: Unlike 

traditional rule-based AI systems where decision-making 
logic is explicit and interpretable, generative AI models 
often operate as “black boxes,” making it difficult for 
clinicians and patients to comprehend how generative 
AI arrived at a particular decision.36 Addressing this 
risk requires meaningful human-AI collaboration, which 
involves integrating AI systems seamlessly into clinical 
workflows to enhance efficiency, accuracy, and patient 
outcomes while preserving the critical role of human 
expertise, empathy, and judgment in delivering high-
quality care.37 

Generative AI offers 
unprecedented potential to 
revolutionize patient care, 
diagnosis, and treatment 
methodologies. However, 
substantial risks remain.

FIGURE 3  |  RELATIVE ESTIMATES OF NUTRITIONAL VALUES OF ONLINE PRE-DEFINED RECIPES AND CHATGPT-GENERATED 
RECIPES WHEN COMPARED WITH USDA-APPROVED SOFTWARE 
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Reflecting on Possibility
In our relentless pursuit of innovation, FME recognizes 
the immense potential of generative AI in revolutionizing 
clinical workflows. However, this potential must be 
harnessed responsibly. At FME, we are developing a 
trustworthy AI framework—one that prioritizes safety, 
security, and ethics. Our commitment extends beyond 
compliance to encompass the thoughtful integration of 
organizational values and change management principles. 
In this new era of healthcare, we remain steadfast in 
our mission to elevate patient care while upholding the 
highest standards of integrity and excellence.

At FME, we are developing a 
trustworthy AI framework—one 
that prioritizes safety, security, 
and ethics.

FME’s use of generative AI tools such as ChatGPT is focused on research or quality assessment purposes and not used for patient care. 
Renal Research Institute is a wholly owned subsidiary of Fresenius Medical Care.
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